Cell Use Instruction - CA46 Cell Line

Product Info

Catalog	YC-B075	UBIO		
Cell line	CA46			BIGEN
Morphology	Monocyte, suspension	Passage ratio	1: 2-1: 3	0×
Culture method	80%RPMI-1640+20%FBS Ubigene didn't use P/S. But client could use P/S after cells grow in good condition after thawing.			
Cryopreservation solution	50%RPMI-1640+40%FBS+10%DMSO			
Special Note	0			GEN
STR Authentica	ation			JBIO

STR Authentication

. 0		Info (Sample	-	ST	R Info (Cell bai	nk)
Loci	Sample Cell Line: CA46		Cell Line: CA-46			
	Allele1	Allele2	Allele3	Allele1	Allele2	Allele3
D5S818	13	13	alGF	13	13	
D13S317	8	12	JUD.	8	12	
D7S820	11	12		11	12	GEN
D16S539	11	12		11	12	UBIC
VWA	15	16		15	16	J
TH01	7	9		7	9	
AMEL	X	Х		Х	Х	
ΤΡΟΧ	8	9		8	9	
CSF1PO	10	12	G	10	12	

17	21			Ű		
19	23					
20	22		NE			
28	29	UBIO				
13	16					SE
15	15				BIGE	ĺ
16	18					
18	18					
5	11					
15.2	15.2		IF.			
12	13	nGF	Ar			
13	13	JUP.				
	19 20 28 13 15 16 18 5 15.2 12	19 23 20 22 28 29 13 16 15 15 16 18 18 18 5 11 15.2 15.2 12 13	19 23 20 22 28 29 13 16 15 15 16 18 18 18 5 11 15.2 15.2 12 13	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19 23 10 20 22 10 28 29 10 13 16 10 15 15 10 16 18 10 18 18 10 15.2 15.2 10 12 13 10	1923 \sim \sim 2022 \sim \sim \sim 2829 \sim \sim \sim 1316 \sim \sim \sim 1515 \sim \sim \sim 1618 \sim \sim \sim 1818 \sim \sim \sim 15.215.2 \sim \sim \sim 1213 \sim \sim \sim

* STR authentication data of this cell line matches with that of cell lines sourced from ATCC, DSMZ, JCRB, and RIKEN databases.

Conclusion: The STR identification of this cell is correct.

Cell Reception

Cryopreserved cells:

In the case of cryopreserved cells transported with dry ice, upon received, immediately transfer to liquid

nitrogen for storage or store briefly at -80°C freezer, or proceed directly to cell thawing. Upon cell

thawing, please count the cell number and cell viability and take some photos of the cells under

different magnification (e.g. at 100x and 40x) as the records.

Notice: Upon received, please ensure to takes photos of the package, including dry ice and the tubes, and contact us within 24 hrs if any abnormalities such as dry ice has ran out, the cap of the cryovial is dislodged, broken and the cell is contaminated.

Cell Thawing

- 1) Preparation: warm up the complete culture medium in 37°C water bath for 30 mins. Transfer the cryopreserved vial from liquid nitrogen to - 80°C freezer, and leave for several minutes to volatilize residual liquid nitrogen;
- 2) Inside the ultra-clean bench, pipet 6-7 mL of complete medium into a 15 mL centrifuge tube;
- 3) Take out the cryopreserved vial from 80°C freezer and leave in dry ice temporarily, shake slightly before thawing to remove residual dry ice and liquid nitrogen. Then hold the cap with forceps, quickly thaw cells in a 37°C water bath by gently swirling the vial (Note: keep the cap out of the water). In about 1 minute, it would completely thaw;
- 4) Inside the ultra-clean bench, sterilize the outer surface of the vial by wiping with an alcohol cotton pellet and leave it to dry. Transfer the thawed cells to the prepared centrifuge tube (step 2) by pipette, close the lid, and centrifuge at 1100 rpm for 4 mins at room temp to collect the cells;
- 5) Inside the ultra-clean bench, carefully remove and discard the supernatant. Resuspend cell pellet with 1mL of fresh complete medium and then transfer to a T25 flask (or 6 cm culture dish) containing 4 mL of complete medium, label the flask with cell name, date and passage no., incubate 3) UBIGENE the flask in a 37°C, 5%CO2 incubator.

Note: Please do not thaw the cells directly to a T75 flask or 10 cm culture dish.

Cell Passaging

The cells can be passaged when they have grown to the required density. The passaging of suspension cells can be divided into the following two cases:

a. Half medium replacement: when cells in good condition, with less cell debris and no yellowing of the culture medium, use half medium replacement method for passaging;

1) Inside the ultra-clean bench, gently pipet the cells in the culture flask evenly and take 20 ul of cells for cell counting;

2) According to the cell counting results, aspirate and discard part of the cell suspension, adjust the cell density to 2x10⁵~4.0x10⁵cells/mL, and culture the cells in different sizes of culture flasks depending on the cell density.

b. Total medium replacement: cells in good condition, with a lot cell debris and the medium has turned yellow, use total medium replacement method for passaging;

1) Transfer culture medium to a 15 mL or 50 mL centrifuge tube in an ultra-clean bench and centrifuge at 1100 rpm for 4 minutes;

2) After centrifugation, remove and discard the supernatant and resuspend the cells with 1 mL of complete medium by pipette, and take 20 ul of cells for cell counting;

3) According to the cell counting results, aspirate and discard part of the cell suspension, adjust the cell density to $2x10^5 \sim 4.0x10^5$ cells/mL, and culture the cells in different sizes of culture flasks depending on the cell density, incubate the flask in a 37°C, 5%CO2 incubator.

Table 1. List of different volumes of medium for suspension cells in different culture plates/flasks

Size of culture plates/flasks	Volume of culture medium		
6-well plate	3 mL		
T25	5mL-8mL		
T75	12mL-28mL		

Gene-editing cell lines | CRISPR Library Microorganisms | EZ-editor™ series products

T175

30mL-50mL

Cell cryopreservation

- 1) Same as procedures of cell passaging, transfer cells from culture flasks to 50 mL centrifuge tubes in an ultra-clean bench and centrifuge at 1100 rpm for 4 minutes at room temp;
- 2) After centrifugation, remove and discard the supernatant, and resuspend the cells with 1-2 mL of 4°C pre-cooled cryopreservation medium (use the one you usually use in lab, or any commercial cryopreservation solutions are fine), mix well by pipetting and take 20 µL for cell counting, then add cryopreservation medium to adjust to the required density (5×10⁶-1x10⁷cells/mL);
- 3) Aliquot the cell suspension to cryovials as 1 mL/tube, close the lid tightly, and the cryovials should be labeled with the cell name, source, cell passage number, and date of cryopreservation in advance;
- 4) Place the cryovials in 4°C pre-cooled Freezing Container, then put the container in -80°C freezers within 15 mins after cell cryopreservation;
- 5) Stay overnight, transfer the cryovials to liquid nitrogen for long-term storage.